Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;102(2):552-9.
doi: 10.1213/01.ane.0000189056.96273.48.

The effect of sevoflurane on dynamic cerebral blood flow autoregulation assessed by spectral and transfer function analysis

Affiliations

The effect of sevoflurane on dynamic cerebral blood flow autoregulation assessed by spectral and transfer function analysis

Yojiro Ogawa et al. Anesth Analg. 2006 Feb.

Abstract

Sevoflurane reduces autonomic neural control, which plays a significant role in cerebral autoregulation. Therefore, we hypothesized that sevoflurane influences cerebral autoregulation. We investigated the effects of sevoflurane on dynamic cerebral blood flow (CBF) autoregulation by using spectral and transfer function analysis between blood pressure variability and CBF velocity variability. Eleven healthy male subjects received 0.5%, 1.0%, and 1.5% sevoflurane via facemask. Dynamic cerebral autoregulation was evaluated by transfer function gain, phase, and coherence between CBF velocity in the middle cerebral artery measured by transcranial Doppler, and blood pressure in the radial artery. Coherence in the very low-frequency range (0.02-0.07 Hz) increased above 0.5 during administration of 0.5% and 1.0% sevoflurane. Transfer function gain in this frequency range (0.02-0.07 Hz), as an index of dynamic cerebral autoregulation, increased significantly with 0.5% and 1.0% sevoflurane. Transfer function gain and coherence in the low- and high-frequency ranges, however, remained unchanged during administration of sevoflurane. These results suggest that sevoflurane impairs dynamic cerebral autoregulation in the very-low-frequency range even with small concentrations, whereas dynamic cerebral autoregulation in the low- and high-frequency ranges remained unchanged.

PubMed Disclaimer

LinkOut - more resources