Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2006 Mar;41(3):234-41.
doi: 10.1002/ppul.20342.

Effect of low altitude at the Dead Sea on exercise capacity and cardiopulmonary response to exercise in cystic fibrosis patients with moderate to severe lung disease

Affiliations
Randomized Controlled Trial

Effect of low altitude at the Dead Sea on exercise capacity and cardiopulmonary response to exercise in cystic fibrosis patients with moderate to severe lung disease

Bareket Falk et al. Pediatr Pulmonol. 2006 Mar.

Abstract

Oxygen supplementation may improve exercise tolerance and the physiological response to exercise in cystic fibrosis (CF) patients. Elevated barometric pressure at low altitude is a simple means of increasing the quantity of inspired oxygen. Our objectives were to examine the effect of natural oxygen enrichment (at the Dead Sea, 396 m below sea level) on exercise capacity, and the physiological responses to maximal and submaximal exercise in CF patients. Patients were tested twice: at sea level (barometric pressure, 754 +/- 6 mmHg, mean +/- SD), and at the Dead Sea (barometric pressure, 791 +/- 3 mmHg), in a randomized crossover design. We studied 14 CF patients (6 females, 8 males), aged 15-45 years, with moderate to severe lung disease (mean forced expired volume in 1 sec = 50.0 +/- 11.2% predicted). Tests at each site included resting spirometry, anthropometry, a graded submaximal exercise test, a maximal exercise test on a treadmill, and a 6-min walk test. Tests were performed in identical order at both sites. Tests at the Dead Sea were performed 72 hr after arrival. No differences between sites were observed in lung function at rest. Peak oxygen consumption was significantly improved at the Dead Sea compared with sea level (1.68 +/- 0.73 vs. 1.57 +/- 0.74 l/min, respectively, P = 0.05), along with an improvement in the ventilatory equivalent for oxygen (41.2 +/- 6.3 vs. 46.1 +/- 7.1, respectively, P < 0.05). During submaximal exercise, blood oxygen saturation improved at the Dead Sea compared with sea level at all exercise intensities (P < 0.05). In conclusion, these results suggest that even a brief stay at the Dead Sea area may have physiological benefits for CF patients with moderate to severe lung disease.

PubMed Disclaimer

Publication types

MeSH terms