Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Feb;59(2):229-36.
doi: 10.1002/ana.20788.

Neurological impact of vasopressin dysregulation and hyponatremia

Affiliations
Review

Neurological impact of vasopressin dysregulation and hyponatremia

Anish Bhardwaj. Ann Neurol. 2006 Feb.

Abstract

Hyponatremia is frequently associated with neurological disease, neurosurgical procedures, and use of psychoactive drugs. Arginine vasopressin (AVP), or antidiuretic hormone, is the principal physiological regulator of water and electrolyte balance, and disruption of the normal AVP response to osmotic stimuli is a common cause of dilutional hyponatremia in neurological disorders. The hyponatremia-induced shift in water from the extracellular to the intracellular compartment can lead to cerebral edema and serious neurological complications, especially if the decrease in serum sodium concentration ([Na+]) is large or rapid. Overly rapid correction of the serum [Na+] may lead to osmotic demyelination and irreversible brain injury. Fluid restriction is considered first-line treatment and pharmacological agents currently used in the treatment of hyponatremia are limited by inconsistent response and adverse side effects. AVP receptor antagonists represent a new approach to the treatment of hyponatremia by blocking tubular reabsorption of water by binding to V2 receptors in the renal collecting ducts, resulting in aquaresis. Initial clinical experience with AVP receptor antagonists for hyponatremia has shown that these agents augment free water clearance, decrease urine osmolality, and correct serum [Na+] and serum osmolality. Controlled clinical trials now underway will help elucidate the role of AVP receptor antagonism in the treatment of hyponatremia.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources