Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005;24(10-12):1519-30.
doi: 10.1080/15257770500265794.

Preference for ribose over deoxyribose in loop-closing base pairs of extra stable nucleic acid hairpins

Affiliations

Preference for ribose over deoxyribose in loop-closing base pairs of extra stable nucleic acid hairpins

Rami N Hannoush et al. Nucleosides Nucleotides Nucleic Acids. 2005.

Abstract

We have investigated the effect of switching ribose to deoxyribose at the closing base-pair of an extra-stable RNA hairpin. Specifically, we studied the sequence 5'-GGAC(UUCG)GUCC, a dodecanucleotide that folds into a well-characterized, "extra stable" RNA hairpin structure. Recently, we showed that hairpins containing a 2',5'-linked (UUCG) loop instead of the native 3',5'-linked loop also exhibit extra-stability (Hannoush and Damha, J. Am. Chem. Soc., 2001, 123, 12368-12374). In this article, we show that the ribose units located at the loop-closing positions (i.e., rC4 and rG9) contribute significantly to the stabilization of RNA hairpins, particularly those containing the 3',5'-UUCG loop. Interestingly, the requirement of rC4 and rG9 is more relaxed for DNA hairpins containing the 2',5'-UUCC loop and, in fact, they may be replaced altogether (ribose--> deoxyribose) without affecting stability. The results broaden our understanding of the behavior of highly stable (UUCG) hairpin loops and how they respond to structural perturbation of the loop-closing base pairs.

PubMed Disclaimer

Publication types

LinkOut - more resources