Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006;11(2):104-12.
doi: 10.1159/000090683. Epub 2006 Jan 17.

Developing a physical model of the human cochlea using micro-fabrication methods

Affiliations

Developing a physical model of the human cochlea using micro-fabrication methods

Michael J Wittbrodt et al. Audiol Neurootol. 2006.

Abstract

Advances in micro-machining technology have provided the opportunity to explore possibilities of creating life-sized physical models of the cochlea. The physical model of the cochlea consists of two fluid-filled channels separated by an elastic partition. The partition is micro-machined from silicon and uses a 36-mm linearly tapered polyimide plate with a width of 100 microm at the basal end and 500 microm at the apex to represent the basilar membrane. Thicknesses from 1 to 5 microm have been fabricated. Discrete aluminum fibers (1.5 microm in width) are machined to create direction-dependent properties. A 0.5 x 0.5 mm opening represents the helicotrema. The fluid channels are machined from plexiglas using conventional machining methods. A magnet-coil system excites the fluid channel. Measurements on a model with thickness 4.75 microm show a velocity gain of 4 and phase of 3.5 pi radians at a location 23 mm from the base. Mathematical modeling using a 3-D formulation confirm the general characteristics of the measured response.

PubMed Disclaimer

Publication types