Developing a physical model of the human cochlea using micro-fabrication methods
- PMID: 16439833
- DOI: 10.1159/000090683
Developing a physical model of the human cochlea using micro-fabrication methods
Abstract
Advances in micro-machining technology have provided the opportunity to explore possibilities of creating life-sized physical models of the cochlea. The physical model of the cochlea consists of two fluid-filled channels separated by an elastic partition. The partition is micro-machined from silicon and uses a 36-mm linearly tapered polyimide plate with a width of 100 microm at the basal end and 500 microm at the apex to represent the basilar membrane. Thicknesses from 1 to 5 microm have been fabricated. Discrete aluminum fibers (1.5 microm in width) are machined to create direction-dependent properties. A 0.5 x 0.5 mm opening represents the helicotrema. The fluid channels are machined from plexiglas using conventional machining methods. A magnet-coil system excites the fluid channel. Measurements on a model with thickness 4.75 microm show a velocity gain of 4 and phase of 3.5 pi radians at a location 23 mm from the base. Mathematical modeling using a 3-D formulation confirm the general characteristics of the measured response.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous