Aryl hydrocarbon receptor modulation of tumor necrosis factor-alpha-induced apoptosis and lysosomal disruption in a hepatoma model that is caspase-8-independent
- PMID: 16446372
- DOI: 10.1074/jbc.M508383200
Aryl hydrocarbon receptor modulation of tumor necrosis factor-alpha-induced apoptosis and lysosomal disruption in a hepatoma model that is caspase-8-independent
Abstract
Recent studies suggest that the aryl hydrocarbon receptor (AhR) modulates susceptibilities to some pro-apoptotic agents. AhR-containing murine hepatoma 1c1c7 cultures underwent apoptosis following exposure to tumor necrosis factor-alpha (TNFalpha) + cycloheximide (CHX). In contrast, Tao cells, an AhR-deficient variant of the 1c1c7 line, were refractory to this treatment. AhR sense/antisense transfection studies demonstrated that AhR contents influenced susceptibility to the pro-apoptotic effects of TNFalpha + CHX. 1c1c7 cells and all variants expressed comparable amounts of TNF receptor-1 and TRADD. However, no cell line expressed FADD, and consequently pro-caspase-8 was not activated. AhR content did not influence JNK and NF-kappaB activation. However, Bid and pro-caspase-9, -3, and -12 processing occurred only in AhR-containing cells. Analyses of cathepsin B and D activities in digitonin-permeabilized cultures and the monitoring of cathepsin B/D co-localization with Lamp-1 indicated that TNFalpha + CHX disrupted late endosomes/lysosomes in only AhR-containing cells. Stabilization of acidic organelles with 3-O-methylsphingomyelin inhibited TNFalpha + CHX-induced apoptosis. The cathepsin D inhibitor pepstatin A suppressed in vitro cleavage of Bid by 1c1c7 lysosomal extracts. It also delayed the induction of apoptosis and partially prevented Bid cleavage and the activation of pro-caspases-3/7 in cultures treated with TNFalpha + CHX. Similar suppressive effects occurred in cultures transfected with murine Bid antisense oligonucleotides. These studies showed that in cells where pro-caspase-8 is not activated, TNFalpha + CHX can initiate apoptosis through lysosomal disruption. Released proteases such as cathepsin D trigger the apoptotic program by activating Bid. Furthermore, in the absence of exogenous ligand, the AhR modulates lysosomal disruption/permeability.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
