Amino acid substitution in the lactose carrier protein with the use of amber suppressors
- PMID: 1644770
- PMCID: PMC206383
- DOI: 10.1128/jb.174.16.5436-5441.1992
Amino acid substitution in the lactose carrier protein with the use of amber suppressors
Abstract
Five lacY mutants with amber stop codons at known positions were each placed into 12 different suppressor strains. The 60 amino acid substitutions obtained in this manner were tested for growth on lactose-minimal medium plates and for transport of lactose, melibiose, and thiomethylgalactoside. Most of the amino acid substitutions in the regions of the putative loops (between transmembrane alpha helices) resulted in a reasonable growth rate on lactose with moderate-to-good transport activity. In one strain (glycine substituted for Trp-10), abnormal sugar recognition was found. The substitution of proline for Trp-33 (in the region of the first alpha helix) showed no activity, while four additional substitutions (lysine, leucine, cysteine, and glutamic acid) showed low activity. Altered sugar specificity was observed when Trp-33 was replaced by serine, glutamine, tyrosine, alanine, histidine, or phenylalanine. It is concluded that Trp-33 may be involved directly or indirectly in sugar recognition.
Similar articles
-
Characterization and sequencing of an uncoupled lactose carrier mutant of Escherichia coli.Biochem Biophys Res Commun. 1994 Apr 15;200(1):268-74. doi: 10.1006/bbrc.1994.1444. Biochem Biophys Res Commun. 1994. PMID: 8166695
-
The interaction between aspartic acid 237 and lysine 358 in the lactose carrier of Escherichia coli.Biochim Biophys Acta. 1991 Feb 25;1062(2):177-86. doi: 10.1016/0005-2736(91)90390-t. Biochim Biophys Acta. 1991. PMID: 1848449
-
Lactose carrier mutants of Escherichia coli with changes in sugar recognition (lactose versus melibiose).J Bacteriol. 1997 Sep;179(17):5570-3. doi: 10.1128/jb.179.17.5570-5573.1997. J Bacteriol. 1997. PMID: 9287014 Free PMC article.
-
Molecular biology of the lactose carrier of Escherichia coli.Biochim Biophys Acta. 1996 Aug 7;1276(1):21-34. doi: 10.1016/0005-2728(96)00030-8. Biochim Biophys Acta. 1996. PMID: 8764889 Review. No abstract available.
-
Proton-linked sugar transport systems in bacteria.J Bioenerg Biomembr. 1990 Aug;22(4):525-69. doi: 10.1007/BF00762961. J Bioenerg Biomembr. 1990. PMID: 2172229 Review.
Cited by
-
Application of Deep Sequencing in Phage Display.Methods Mol Biol. 2024;2738:333-345. doi: 10.1007/978-1-0716-3549-0_20. Methods Mol Biol. 2024. PMID: 37966608
-
Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change.Protein Sci. 1995 Nov;4(11):2310-8. doi: 10.1002/pro.5560041108. Protein Sci. 1995. PMID: 8563627 Free PMC article.
-
Lactose permease H+-lactose symporter: mechanical switch or Brownian ratchet?Biophys J. 2007 May 15;92(10):3474-91. doi: 10.1529/biophysj.106.100669. Epub 2007 Feb 26. Biophys J. 2007. PMID: 17325012 Free PMC article.
-
Was Wright right? The canonical genetic code is an empirical example of an adaptive peak in nature; deviant genetic codes evolved using adaptive bridges.J Mol Evol. 2010 Aug;71(2):87-99. doi: 10.1007/s00239-010-9373-8. Epub 2010 Aug 15. J Mol Evol. 2010. PMID: 20711776 Free PMC article. Review.
-
Predicting deleterious amino acid substitutions.Genome Res. 2001 May;11(5):863-74. doi: 10.1101/gr.176601. Genome Res. 2001. PMID: 11337480 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources