Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Aug 15;267(23):16146-54.

Characterization of phycocyanin produced by cpcE and cpcF mutants and identification of an intergenic suppressor of the defect in bilin attachment

Affiliations
  • PMID: 1644802
Free article

Characterization of phycocyanin produced by cpcE and cpcF mutants and identification of an intergenic suppressor of the defect in bilin attachment

R V Swanson et al. J Biol Chem. .
Free article

Abstract

Mutants of the cyanobacterium Synechococcus sp. PCC 7002 constructed by the insertional inactivation of either the cpcE or cpcF gene produce low levels of spectroscopically detectable phycocyanin. The majority of the phycocyanin produced in these strains appears to lack the alpha subunit phycocyanobilin (PCB) chromophore (Zhou, J., Gasparich, G. E., Stirewalt, V. L., de Lorimier, R., and Bryant, D. A. (1992) J. Biol. Chem. 267, 16138-16145). Purification of the phycocyanin produced in the mutants revealed two fractions each with an aberrant absorption spectrum. Tryptic peptide maps of the major fraction showed that the alpha-84 PCB peptide was absent. The two PCB peptides derived from the beta subunit were normal. Tryptic digests of the less abundant phycocyanin fraction contained a family of bilin peptides derived from the alpha subunit. Several distinct bilin adducts were present. A major component was a mesobiliverdin adduct, a previously described product of the in vitro reaction of PCB and apophycocyanin. The same results were obtained with both the cpcE mutant and the cpcF mutant. In vitro reactions with PCB and the fractions containing apo alpha subunit showed that the alpha-84 bilin attachment site was unmodified and competent for adduct formation. Pseudo-revertants of both strains were observed to arise at high frequency. Analysis of the phycocyanin from a cpcE pseudo-revertant, which produced a near wild-type level of phycocyanin with alpha subunit carrying PCB, revealed a single amino acid substitution, alpha-Tyr129----Cys. This residue, which is conserved in all phycocyanins sequenced to date, forms part of the alpha-84 bilin binding site and lies within 5 A of alpha-Cys84. A mutated cpcA gene containing this substitution was constructed by site-directed mutagenesis and transformed, along with cpcB, into a cpcBAC deletion strain containing an insertionally inactivated cpcE. This strain produces high levels of phycocyanin and the majority of the alpha subunit carries PCB at alpha-Cys84.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources