Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;20(2):251-8.
doi: 10.1096/fj.05-4553com.

Potent regulation of microglia-derived oxidative stress and dopaminergic neuron survival: substance P vs. dynorphin

Affiliations

Potent regulation of microglia-derived oxidative stress and dopaminergic neuron survival: substance P vs. dynorphin

M L Block et al. FASEB J. 2006 Feb.

Abstract

Unregulated microglial activation has been implicated as a pivotal factor contributing to Parkinson's disease. Using mesencephalic neuron-glia cultures, we address the novel possibility that peptides endogenous to the substantia nigra (SN), substance P and dynorphin (10(-13)-10(-14) M), are opposing mediators of microglial activation and consequent DA neurotoxicity. Here, we identify that substance P (10(-13)-10(-14) M) is selectively toxic to DA neurons in a microglia-dependent manner. Mechanistically, substance P (10(-13)-10(-14) M) activated microglial NADPH oxidase to produce extracellular superoxide and intracellular reactive oxygen species (ROS). Neuron-glia cultures from mice lacking a functional NADPH oxidase complex (PHOX-/-) were insensitive to substance P (10(-13)-10(-14) M) -induced loss of DA neuron function. Mixed glia cultures from (PHOX-/-) mice failed to show a significant increase in intracellular ROS in response to substance P compared with control cultures (PHOX+/+). Further, dynorphin (10(-14) M) inhibited substance P (10(-13) M) -induced loss of [3H] DA uptake. Here we demonstrate a tightly regulated mechanism governing microglia-derived oxidative stress, where the neuropeptide balance of dynorphin and substance P is critical to DA neuron survival.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources