Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul 1;119(1):41-8.
doi: 10.1002/ijc.21685.

Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo

Affiliations

Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo

Jérôme Alexandre et al. Int J Cancer. .

Abstract

Intracellular events following paclitaxel binding to microtubules that lead to cell death remain poorly understood. Because reactive oxygen species (ROS) are involved in the cytotoxicity of anticancer agents acting through independent molecular targets, we explored the role of ROS in paclitaxel cytotoxicity. Within 15 min after in vitro exposure of A549 human lung cancer cells to paclitaxel, a concentration-dependent intracellular increase in O(o)(2)(-) and H(2)O(2) levels was detected by spectrofluorometry. Addition of N-acetylcysteine (NAC) or glutathione, two H(2)O(2) scavenger, induced a 4-fold increase in paclitaxel IC(50). Delaying NAC co-incubation by 4 hr, resulted in a 3-fold reduction in cell protection. The glutathione synthesis inhibitor, buthionine sulfoximine significantly increased paclitaxel cytotoxicity and H(2)O(2) accumulation, but did not modify O(o)(2)(-) levels. Co-incubation with diphenylene iodonium suggested that paclitaxel induced-O(o)(2)(-) production was in part associated with increased activity of cytoplasmic NADPH oxidase. Concomitant treatment with inhibitors of caspases 3 and 8 increased cell survival but did not prevent the early accumulation of H(2)O(2.) To evaluate the role of ROS in paclitaxel antitumoral activity, mice were injected with LLC1 lung cancer cells and treated with paclitaxel i.p. and/or NAC. The antitumoral activity of paclitaxel in mice was abolished by NAC. In conclusion, the accumulation of H(2)O(2) is an early and crucial step for paclitaxel-induced cancer cell death before the commitment of the cells into apoptosis. These results suggest that ROS participate in vitro and in vivo to paclitaxel cytotoxicity.

PubMed Disclaimer

MeSH terms

LinkOut - more resources