Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Dec 30;6 Suppl 1(Suppl 1):S29.
doi: 10.1186/1471-2156-6-S1-S29.

Comparison of microsatellites, single-nucleotide polymorphisms (SNPs) and composite markers derived from SNPs in linkage analysis

Affiliations
Comparative Study

Comparison of microsatellites, single-nucleotide polymorphisms (SNPs) and composite markers derived from SNPs in linkage analysis

Chao Xing et al. BMC Genet. .

Abstract

There is growing evidence that a map of dense single-nucleotide polymorphisms (SNPs) can outperform a map of sparse microsatellites for linkage analysis. There is also argument as to whether a clustered SNP map can outperform an evenly spaced SNP map. Using Genetic Analysis Workshop 14 simulated data, we compared for linkage analysis microsatellites, SNPs, and composite markers derived from SNPs. We encoded the composite markers in a two-step approach, in which the maximum identity length contrast method was employed to allow for recombination between loci. A SNP map 2.3 times as dense as a microsatellite map (approximately 2.9 cM compared to approximately 6.7 cM apart) provided slightly less information content (approximately 0.83 compared to approximately 0.89). Most inheritance information could be extracted when the SNPs were spaced < 1 cM apart. Comparing the linkage results on using SNPs or composite markers derived from them based on both 3 cM and 0.3 cM resolution maps, we showed that the inter-SNP distance should be kept small (< 1 cM), and that for multipoint linkage analysis the original markers and the derived composite markers had similar power; but for single point linkage analysis the resulting composite markers lead to more power. Considering all factors, such as information content, flexibility of analysis method, map errors, and genotyping errors, a map of clustered SNPs can be an efficient design for a genome-wide linkage scan.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Single-point and multipoint linkage signals by Haseman-Elston regression. Scanning indicates using the map of SNPs ~3 cM apart; fine mapping indicates using the map of SNPs ~0.3 cM apart. Solid line: single SNP as a marker; dotted line: 3 SNPs in a cluster; dashed line: 5 SNPs in a cluster.

Similar articles

Cited by

References

    1. Kennedy GC, Matsuzaki H, Dong S, Liu WM, Huang J, Liu G, Su X, Cao M, Chen W, Zhang J, Liu W, Yang G, Di X, Ryder T, He Z, Surti U, Phillips MS, Boyce-Jacino MT, Fodor SP, Jones KW. Large scale genotyping of complex DNA. Nat Biotechnol. 2003;21:1233–1237. doi: 10.1038/nbt869. - DOI - PubMed
    1. Kruglyak L. The use of a genetic map of biallelic markers in linkage studies. Nat Genet. 1997;17:21–24. doi: 10.1038/ng0997-21. - DOI - PubMed
    1. Wilson AF, Sorant AJ. Equivalence of single- and multilocus markers: power to detect linkage with composite markers derived from biallelic loci. Am J Hum Genet. 2000;66:1610–1615. doi: 10.1086/302889. - DOI - PMC - PubMed
    1. Goddard KAB, Wijsman EM. Characteristics of genetic markers and maps for cost-effective genome screens using diallelic markers. Genet Epidemiol. 2002;22:205–220. doi: 10.1002/gepi.0177. - DOI - PubMed
    1. Evans DM, Cardon LR. Guidelines for genotyping in genomewide linkage studies: single-nucleotide-polymorphism maps versus microsatellite maps. Am J Hum Genet. 2004;75:687–692. doi: 10.1086/424696. - DOI - PMC - PubMed

Publication types

Substances

LinkOut - more resources