Proteomic evaluation of neonatal exposure to 2,2 ,4,4 ,5-pentabromodiphenyl ether
- PMID: 16451863
- PMCID: PMC1367840
- DOI: 10.1289/ehp.8419
Proteomic evaluation of neonatal exposure to 2,2 ,4,4 ,5-pentabromodiphenyl ether
Abstract
Exposure to the brominated flame retardant 2,2 ,4,4 ,5-pentabromodiphenyl ether (PBDE-99) during the brain growth spurt disrupts normal brain development in mice and results in disturbed spontaneous behavior in adulthood. The neurodevelopmental toxicity of PBDE-99 has been reported to affect the cholinergic and catecholaminergic systems. In this study we use a proteomics approach to study the early effect of PBDE-99 in two distinct regions of the neonatal mouse brain, the striatum and the hippocampus. A single oral dose of PBDE-99 (12 mg/kg body weight) or vehicle was administered to male NMRI mice on neonatal day 10, and the striatum and the hippocampus were isolated. Using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), we found 40 and 56 protein spots with significantly (p < 0.01) altered levels in the striatum and the hippocampus, respectively. We used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF-MS) to determine the protein identity of 11 spots from the striatum and 10 from the hippocampus. We found that the levels of proteins involved in neurodegeneration and neuroplasticity (e.g., Gap-43/neuromodulin, stathmin) were typically altered in the striatum, and proteins involved in metabolism and energy production [e.g., alpha-enolase; gamma-enolase; ATP synthase, H+ transporting, mitochondrial F1 complex, beta subunit (Atp5b); and alpha-synuclein] were typically altered in the hippocampus. Interestingly, many of the identified proteins have been linked to protein kinase C signaling. In conclusion, we identify responses to early exposure to PBDE-99 that could contribute to persistent neurotoxic effects. This study also shows the usefulness of proteomics to identify potential biomarkers of developmental neurotoxicity of organohalogen compounds.
Figures
References
-
- Benowitz LI, Routtenberg A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 1997;20:84–91. - PubMed
-
- Birnbaum SG, Yuan PX, Wang M, Vijayraghavan S, Bloom AK, Davis DJ, et al. Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science. 2004;306:882–884. - PubMed
-
- Cheon MS, Fountoulakis M, Cairns NJ, Dierssen M, Herkner K, Lubec G. Decreased protein levels of stathmin in adult brains with Down syndrome and Alzheimer’s disease. J Neural Transm Suppl. 2001:281–288. - PubMed
-
- Davison AN. Dobbings, J. 1968. Applied Neurochemistry. Oxford, UK:Blackwell.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous