Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Mar;91(2):339-54.
doi: 10.1113/expphysiol.2005.031070. Epub 2006 Feb 1.

Whole heart action potential duration restitution properties in cardiac patients: a combined clinical and modelling study

Affiliations
Free article
Comparative Study

Whole heart action potential duration restitution properties in cardiac patients: a combined clinical and modelling study

Martyn P Nash et al. Exp Physiol. 2006 Mar.
Free article

Abstract

Steep action potential duration (APD) restitution has been shown to facilitate wavebreak and ventricular fibrillation. The global APD restitution properties in cardiac patients are unknown. We report a combined clinical electrophysiology and computer modelling study to: (1) determine global APD restitution properties in cardiac patients; and (2) examine the interaction of the observed APD restitution with known arrhythmia mechanisms. In 14 patients aged 52-85 years undergoing routine cardiac surgery, 256 electrode epicardial mapping was performed. Activation-recovery intervals (ARI; a surrogate for APD) were recorded over the entire ventricular surface. Mono-exponential restitution curves were constructed for each electrode site using a standard S1-S2 pacing protocol. The median maximum restitution slope was 0.91, with 27% of all electrode sites with slopes<0.5, 29% between 0.5 and 1.0, and 20% between 1.0 and 1.5. Eleven per cent of restitution curves maintained slope>1 over a range of diastolic intervals of at least 30 ms; and 0.3% for at least 50 ms. Activation-recovery interval restitution was spatially heterogeneous, showing regional organization with multiple discrete areas of steep and shallow slope. We used a simplified computer model of 2-D cardiac tissue to investigate how heterogeneous APD restitution can influence vulnerability to, and stability of re-entry. Our model showed that heterogeneity of restitution can act as a potent arrhythmogenic substrate, as well as influencing the stability of re-entrant arrhythmias. Global epicardial mapping in humans showed that APD restitution slopes were organized into regions of shallow and steep slopes. This heterogeneous organization of restitution may provide a substrate for arrhythmia.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources