Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;91(3):539-50.
doi: 10.1113/expphysiol.2005.032078. Epub 2006 Feb 1.

Effects of diet and osmotic pressure on Na+ transport and tissue conductance of sheep isolated rumen epithelium

Affiliations
Free article

Effects of diet and osmotic pressure on Na+ transport and tissue conductance of sheep isolated rumen epithelium

Ulrike Lodemann et al. Exp Physiol. 2006 May.
Free article

Abstract

The intention of this study was to determine the effects of mucosal osmotic pressure on transport and barrier functions of the rumen epithelium of sheep, which were fed various diets: hay ad libitum, or 600, 1200 or 1800 g day(-1) of a supplemented diet plus hay ad libitum. The experiments were conducted by using the conventional Ussing chamber technique. Mucosal osmolarity was adjusted to 300 (control), 375 or 450 mosmol l(-1). Feeding of a supplemented diet led to a significant increase of mucosal to serosal Na+ transport and net Na+ transport, probably because of an increase of apical Na+-H+ exchange activity. An increase in mucosal osmotic pressure: (a) reduced net Na+ transport in all feeding groups, the remaining net Na+ transport being higher in tissues of sheep fed a supplemented diet; (b) increased transepithelial tissue conductance, this rise being smallest with a high intake of the supplemented diet; and (c) enhanced the serosal to mucosal Na+ transport in tissues of hay-fed sheep and sheep fed with 600 g day(-1) of the supplemented diet, while higher intakes of the supplemented diet (1200 and 1800 g) did not produce any effect. All these changes indicate a diet-dependent adaptation to luminal hypertonicity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources