Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb 1;66(3):1509-16.
doi: 10.1158/0008-5472.CAN-05-3029.

Activation of the nuclear factor kappaB pathway by astrocyte elevated gene-1: implications for tumor progression and metastasis

Affiliations

Activation of the nuclear factor kappaB pathway by astrocyte elevated gene-1: implications for tumor progression and metastasis

Luni Emdad et al. Cancer Res. .

Abstract

Astrocyte elevated gene-1 (AEG-1) was initially identified as an HIV-1- and tumor necrosis factor alpha (TNF-alpha)-inducible transcript in primary human fetal astrocytes by a rapid subtraction hybridization approach. Interestingly, AEG-1 expression is elevated in subsets of breast cancer, glioblastoma multiforme and melanoma cells and AEG-1 cooperates with Ha-ras to promote transformation of immortalized melanocytes. Activation of the transcription factor nuclear factor kappaB (NF-kappaB), a TNF-alpha downstream signaling component, is associated with several human illnesses, including cancer, and NF-kappaB controls the expression of multiple genes involved in tumor progression and metastasis. We now document that AEG-1 is a significant positive regulator of NF-kappaB. Enhanced expression of AEG-1 via a replication-incompetent adenovirus (Ad.AEG-1) in HeLa cells markedly increased binding of the transcriptional activator p50/p65 complex of NF-kappaB. The NF-kappaB activation induced by AEG-1 corresponded with degradation of IkappaBalpha and nuclear translocation of p65 that resulted in the induction of NF-kappaB downstream genes. Infection with an adenovirus expressing the mt32IkappaBalpha superrepressor (Ad.IkappaBalpha-mt32), which prevents p65 nuclear translocation, inhibited AEG-1-induced enhanced agar cloning efficiency and increased matrigel invasion of HeLa cells. We also document that TNF-alpha treatment resulted in nuclear translocation of both AEG-1 and p65 wherein these two proteins physically interacted, suggesting a potential mechanism by which AEG-1 could activate NF-kappaB. Our findings suggest that activation of NF-kappaB by AEG-1 could represent a key molecular mechanism by which AEG-1 promotes anchorage-independent growth and invasion, two central features of the neoplastic phenotype.

PubMed Disclaimer

Publication types

MeSH terms