Loss of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in yeast post-Golgi secretory vesicles
- PMID: 16452632
- PMCID: PMC1415292
- DOI: 10.1091/mbc.e05-10-0912
Loss of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in yeast post-Golgi secretory vesicles
Abstract
Eukaryotic plasma membranes generally display asymmetric lipid distributions with the aminophospholipids concentrated in the cytosolic leaflet. This arrangement is maintained by aminophospholipid translocases (APLTs) that use ATP hydrolysis to flip phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the external to the cytosolic leaflet. The identity of APLTs has not been established, but prime candidates are members of the P4 subfamily of P-type ATPases. Removal of P4 ATPases Dnf1p and Dnf2p from budding yeast abolishes inward translocation of 6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)aminocaproyl] (NBD)-labeled PS, PE, and phosphatidylcholine (PC) across the plasma membrane and causes cell surface exposure of endogenous PE. Here, we show that yeast post-Golgi secretory vesicles (SVs) contain a translocase activity that flips NBD-PS, NBD-PE, and NBD-PC to the cytosolic leaflet. This activity is independent of Dnf1p and Dnf2p but requires two other P4 ATPases, Drs2p and Dnf3p, that reside primarily in the trans-Golgi network. Moreover, SVs have an asymmetric PE arrangement that is lost upon removal of Drs2p and Dnf3p. Our results indicate that aminophospholipid asymmetry is created when membrane flows through the Golgi and that P4-ATPases are essential for this process.
Figures









Similar articles
-
Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function.Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10614-9. doi: 10.1073/pnas.0404146101. Epub 2004 Jul 12. Proc Natl Acad Sci U S A. 2004. PMID: 15249668 Free PMC article.
-
Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis.Mol Biol Cell. 2003 Mar;14(3):1240-54. doi: 10.1091/mbc.e02-08-0501. Mol Biol Cell. 2003. PMID: 12631737 Free PMC article.
-
Loss of Drs2p does not abolish transfer of fluorescence-labeled phospholipids across the plasma membrane of Saccharomyces cerevisiae.J Biol Chem. 1998 Dec 18;273(51):34399-405. doi: 10.1074/jbc.273.51.34399. J Biol Chem. 1998. PMID: 9852106
-
Substrates of P4-ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine).FASEB J. 2019 Mar;33(3):3087-3096. doi: 10.1096/fj.201801873R. Epub 2018 Dec 3. FASEB J. 2019. PMID: 30509129 Review.
-
Phospholipid flippases: building asymmetric membranes and transport vesicles.Biochim Biophys Acta. 2012 Aug;1821(8):1068-77. doi: 10.1016/j.bbalip.2011.12.007. Epub 2011 Dec 31. Biochim Biophys Acta. 2012. PMID: 22234261 Free PMC article. Review.
Cited by
-
Auto-inhibition of Drs2p, a yeast phospholipid flippase, by its carboxyl-terminal tail.J Biol Chem. 2013 Nov 1;288(44):31807-15. doi: 10.1074/jbc.M113.481986. Epub 2013 Sep 17. J Biol Chem. 2013. PMID: 24045945 Free PMC article.
-
Role of phosphatidylserine in phospholipid flippase-mediated vesicle transport in Saccharomyces cerevisiae.Eukaryot Cell. 2014 Mar;13(3):363-75. doi: 10.1128/EC.00279-13. Epub 2014 Jan 3. Eukaryot Cell. 2014. PMID: 24390140 Free PMC article.
-
Lipid flippase modulates olfactory receptor expression and odorant sensitivity in Drosophila.Proc Natl Acad Sci U S A. 2014 May 27;111(21):7831-6. doi: 10.1073/pnas.1401938111. Epub 2014 May 12. Proc Natl Acad Sci U S A. 2014. PMID: 24821794 Free PMC article.
-
Phosphatidylserine stimulation of Drs2p·Cdc50p lipid translocase dephosphorylation is controlled by phosphatidylinositol-4-phosphate.J Biol Chem. 2012 Apr 13;287(16):13249-61. doi: 10.1074/jbc.M111.313916. Epub 2012 Feb 20. J Biol Chem. 2012. PMID: 22351780 Free PMC article.
-
Neo1 and phosphatidylethanolamine contribute to vacuole membrane fusion in Saccharomyces cerevisiae.Cell Logist. 2016 Aug 25;6(3):e1228791. doi: 10.1080/21592799.2016.1228791. eCollection 2016 Jul-Sep. Cell Logist. 2016. PMID: 27738552 Free PMC article.
References
-
- Bell, R. M., Ballas, L. M., and Coleman, R. A. (1981). Lipid topogenesis. J. Lipid Res. 22, 391–403. - PubMed
-
- Birchmeier, W., Lanz, J. H., Winterhalter, K. H., and Conrad, M. J. (1979). ATP-induced endocytosis in human erythrocyte ghosts. Characterization of the process and isolation of the endocytosed vesicles. J. Biol. Chem. 254, 9298–9304. - PubMed
-
- Bishop, W. R., and Bell, R. M. (1985). Assembly of the endoplasmic reticulum phospholipid bilayer: the phosphatidylcholine transporter. Cell 42, 51–60. - PubMed
-
- Cribier, S., Morrot, G., and Zachowski, A. (1993). Dynamics of the membrane lipid phase. Prostaglandins Leukot. Essent. Fatty Acids 48, 27–32. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases