Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003:2:159-68.

Local similarity in RNA secondary structures

Affiliations
  • PMID: 16452790

Local similarity in RNA secondary structures

Matthias Höchsmann et al. Proc IEEE Comput Soc Bioinform Conf. 2003.

Abstract

We present a systematic treatment of alignment distance and local similarity algorithms on trees and forests. We build upon the tree alignment algorithm for ordered trees given by Jiang et. al (1995) and extend it to calculate local forest alignments, which is essential for finding local similar regions in RNA secondary structures. The time complexity of our algorithm is O(|F(1)| |F(2) deg(F(1)) deg(F(2)) (deg(F(1)) + deg(F(2))) where |F(i)| is the number of nodes in forest F(i) and deg (F(i)) is the degree of F(i). We provide carefully engineered dynamic programming implementations using dense, two-dimensional tables which considerably reduces the space requirement. We suggest a new representation of RNA secondary structures as forests that allow reasonable scoring of edit operations on RNA secondary structures. The comparison of RNA secondary structures is facilitated by a new visualization technique for RNA secondary structure alignments. Finally, we show how potential regulatory motifs can be discovered solely by their structural preservation, and independent of their sequence conservation and position.

PubMed Disclaimer

LinkOut - more resources