Biochemical and functional discrimination of platelet-derived growth factor alpha and beta receptors in BALB/c-3T3 cells
- PMID: 1645344
Biochemical and functional discrimination of platelet-derived growth factor alpha and beta receptors in BALB/c-3T3 cells
Abstract
Three biologically active isoforms of platelet-derived growth factor (PDGF) exist: PDGF-AB, the predominant form in human platelets; PDGF-BB, the product of the c-sis protooncogene; and PDGF-AA. PDGF-BB and PDGF-AB interact with two distinct PDGF receptors (termed alpha and beta) of similar size, whereas PDGF-AA binds alpha receptors only. To dissect alpha and beta receptor-mediated signals, we compared the biological activities of PDGF-AA and PDGF-BB in density-arrested BALB/c-3T3 cells, which possess a 4:1 ratio of beta to alpha receptors, and assessed the contribution of alpha receptors to PDGF-BB- and PDGF-AB-induced responses. In addition, we describe a convenient method for resolving alpha and beta receptors on one-dimensional protein gels. This protocol involves treatment of cells with neuraminidase, a desialylating agent, and subsequent in vitro autophosphorylation of solubilized cells, and was used to monitor the presence or absence of alpha and beta receptors under various experimental conditions. Our data show that although higher concentrations were required, PDGF-AA stimulated DNA synthesis to the same extent as did PDGF-BB. Both isoforms induced inositol phosphate formation, epidermal growth factor transmodulation, and PDGF receptor autophosphorylation; PDGF-AA, however, was less effective than was PDGF-BB even at doses causing maximal mitogenesis. Pretreatment of cells with PDGF-AA for 30-60 min at 37 degrees C effectively down-regulated alpha receptors as verified by the absence of desialylated alpha receptor phosphorylation. Depletion of alpha receptors did not affect the capacity of PDGF-BB or PDGF-AB to activate the beta receptor tyrosine kinase, as assessed by tyrosine phosphorylation of an endogenous substrate, or stimulate the formation of inositol phosphates. We suggest that alpha and beta receptors independently mediate similar biological responses in BALB/c-3T3 cells, and that alpha receptors are not required for responses induced by PDGF-BB or PDGF-AB.
Similar articles
-
Platelet-derived growth factor (PDGF) alpha receptor activation modulates the calcium mobilizing activity of the PDGF beta receptor in Balb/c3T3 fibroblasts.J Biol Chem. 1992 Jun 15;267(17):11888-97. J Biol Chem. 1992. PMID: 1318305
-
Early signals in the mitogenic response of Swiss 3T3 cells: a comparative study of purified PDGF homodimers.Growth Factors. 1990;3(2):83-95. doi: 10.3109/08977199009108271. Growth Factors. 1990. PMID: 2169773
-
Activation of PLC and PI 3 kinase by PDGF receptor alpha is not sufficient for mitogenesis and migration in mesangial cells.Kidney Int. 2000 Mar;57(3):908-17. doi: 10.1046/j.1523-1755.2000.00907.x. Kidney Int. 2000. PMID: 10720944
-
Structural and functional aspects of the receptors for platelet-derived growth factor.Prog Growth Factor Res. 1989;1(4):253-66. doi: 10.1016/0955-2235(89)90014-8. Prog Growth Factor Res. 1989. PMID: 2562360 Review.
-
Structural and functional aspects of platelet-derived growth factor and its receptors.Ciba Found Symp. 1990;150:6-14; discussion 14-22. doi: 10.1002/9780470513927.ch2. Ciba Found Symp. 1990. PMID: 2164910 Review.
Cited by
-
A novel 7-nucleotide motif located in 3' untranslated sequences of the immediate-early gene set mediates platelet-derived growth factor induction of the JE gene.Mol Cell Biol. 1992 Dec;12(12):5288-300. doi: 10.1128/mcb.12.12.5288-5300.1992. Mol Cell Biol. 1992. PMID: 1448065 Free PMC article.
-
Platelet-derived growth factor (PDGF)-AB-mediated phosphorylation of PDGF beta receptors.Biochem J. 1994 Jan 15;297 ( Pt 2)(Pt 2):379-84. doi: 10.1042/bj2970379. Biochem J. 1994. PMID: 8297345 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources