Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jul;4(7):1701-8.
doi: 10.1002/j.1460-2075.1985.tb03839.x.

Transition stages of molecular drive in multiple-copy DNA families in Drosophila

Affiliations

Transition stages of molecular drive in multiple-copy DNA families in Drosophila

T Strachan et al. EMBO J. 1985 Jul.

Abstract

Multigene and non-genic DNA families are in a state of turnover and hence are continually being replaced throughout a population by new variant repeats. To quantify such molecular processes, in the absence of selection, it is necessary to find and compare stages of transistion during the homogenization of at least two non-genic families evolving in parallel in a closely related group of species. Detailed sequence analysis of patterns of variation, at each nucleotide position considered independently, amongst repeats of two tandem DNA families from seven related Drosophila species, reveals all stages of transition during the spread of randomly produced variant repeats. Variant repeats are found at different stages of homogenization and fixation in a population, irrespective of the loci, chromosomes or individuals from which they were cloned. Differences between the families in the relatively small number of variants at each transition stage and the greater number of fully homogenized and fixed variants between species of greater divergence indicate that the process of spread (molecular drive) is rapid relative to the mutation rate and occurs at seemingly different constant rates for each family. Occasional gene conversions, in addition to unequal exchanges, have contributed to family turnover. The significance of these results to the evolution of functional multigene families and divergence and conservation of sequences is discussed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Cell. 1979 Apr;16(4):697-710 - PubMed
    1. Chromosoma. 1978 Aug 14;67(4):341-63 - PubMed
    1. J Mol Biol. 1977 Feb 15;110(1):119-46 - PubMed
    1. Methods Enzymol. 1980;65(1):560-80 - PubMed
    1. Nucleic Acids Res. 1982 Nov 11;10(21):7017-26 - PubMed

LinkOut - more resources