Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May-Jun;82(3):817-22.
doi: 10.1562/2005-11-23-RA-739.

Influence of human serum albumin on photodegradation of folic acid in solution

Affiliations

Influence of human serum albumin on photodegradation of folic acid in solution

Pavel Vorobey et al. Photochem Photobiol. 2006 May-Jun.

Abstract

It has been proposed that photodegradation of folates may be the reason for the pigmentation of races living under high fluence rates of ultraviolet radiation. The photodegradation of folic acid (FA) induced by ultraviolet-A (UV-A) radiation, in solution and in the presence of human serum albumin (HSA), was studied with absorption and fluorescence spectroscopy. FA photodegradation, with formation of p-aminobenzoyl-l-glutamic acid, 6-formylpterin and pterin-6-carboxylic acid, was found to follow an exponential trend. A scheme of FA photodegradation, which involves photosensitization of FA degradation by its photoproducts, was proposed. The rate of FA photodegradation decreased drastically in the presence of HSA, whereas the spectral characteristics of the photoproducts remained constant. The reduction of the FA photodegradation rate by HSA was accompanied by degradation of tryptophan in HSA. Tryptophan, when added to solutions of FA, had a similar effect as HSA. In solutions of FA and HSA the FA photoproducts cause photodamage mainly to HSA rather than to FA itself. The oxygen dependence of FA photodegradation and the inhibition of this process by sodium azide indicate that singlet oxygen may participate in the photosensitizing activity of FA photoproducts.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources