Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006;6(2):77-92.
doi: 10.2174/156802606775270297.

Selective inhibitors of inducible nitric oxide synthase: potential agents for the treatment of inflammatory diseases?

Affiliations
Review

Selective inhibitors of inducible nitric oxide synthase: potential agents for the treatment of inflammatory diseases?

Alan C Tinker et al. Curr Top Med Chem. 2006.

Abstract

Nitric Oxide (NO) is widely recognized as an important messenger and effector molecule in a variety of biological systems. There is strong evidence from animal models that elevated or lowered NO levels are associated with a variety of pathological states. In nature, NO is synthesised from the amino acid l-arginine by a small family of closely related oxygenase enzymes: the nitric oxide synthases (NOS). A number of studies in animals have associated excessive NO production by one of these enzymes--the inducible NOS isoform (iNOS or NOS-II)--with acute and chronic inflammation in model systems and have also demonstrated that administration of NOS inhibitors can produce beneficial effects. Regrettably, however, the relatively poor potency, selectivity and pharmacokinetic (ADME) profiles of the available inhibitors have so far precluded a convincing demonstration of their efficacy in the clinic. This review will describe the current state of knowledge of the structure and function of NOS and the various approaches that are being followed in the search for truly selective NOS inhibitors as therapeutic agents for inflammatory diseases.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources