Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Jun:447:105-11.
doi: 10.1097/01.blo.0000203463.27937.97.

A mobile-bearing knee prosthesis can reduce strain at the proximal tibia

Affiliations
Comparative Study

A mobile-bearing knee prosthesis can reduce strain at the proximal tibia

Michael Bottlang et al. Clin Orthop Relat Res. 2006 Jun.

Abstract

Mobile and fixed-bearing knee prostheses are likely to generate distinct strain gradients in the proximal tibia. The resulting strain distribution in the proximal tibia governs bone remodeling and affects implant integration and stability. We determined the effects of fixed and mobile-bearing total knee prostheses on strain distribution at the proximal tibia. This mobile-bearing prosthesis was evaluated in cadaveric specimens under axial and torsional loading. Strain on the proximal tibial cortex was measured with rosette strain gages and an optical full-field strain acquisition system. Tibial torsion in response to combined axial and torsional loading was documented. There was no difference in cortex strain between the fixed and the mobile-bearing prostheses under 1.5 kN axial loading. Superimposing 10 degrees tibial internal rotation induced 22% less compressive strain in the mobile-bearing prosthesis compared with the fixed-bearing prosthesis. Under 10 degrees tibial external rotation, the mobile-bearing prosthesis induced 33% less compressive strain than the fixed-bearing prosthesis. Optically acquired strain fields showed peak compressive strain at the anteromedial aspect 30 mm below the joint line. The mobile-bearing prosthesis reduced torque in the proximal tibia during knee rotation by 68-73% compared with the fixed-bearing prosthesis. Our data suggest that the particular mobile-bearing prosthesis tested potentially reduces elevated strain levels in the proximal tibia.

PubMed Disclaimer

Similar articles

Cited by

Publication types