Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar 15;47(4):380-6.
doi: 10.1016/j.toxicon.2005.12.005. Epub 2006 Feb 2.

Kinetic and mechanistic characterization of the Sphingomyelinases D from Loxosceles intermedia spider venom

Affiliations

Kinetic and mechanistic characterization of the Sphingomyelinases D from Loxosceles intermedia spider venom

Sonia A de Andrade et al. Toxicon. .

Abstract

Envenomation by arachnids of the genus Loxosceles leads to local dermonecrosis and serious systemic toxicity mainly induced by sphingomyelinases D (SMase D). These enzymes catalyze the hydrolysis of sphingomyelin resulting in the formation of ceramide-phosphate and choline as well as the cleavage of lysophosphatidyl choline generating the lipid mediator lysophosphatidic acid. We have, previously, cloned and expressed two functional SMase D isoforms, named P1 and P2, from Loxosceles intermedia venom and comparative protein sequence analysis revealed that they are highly homologous to SMase I from Loxosceles laeta which folds to form an (alpha/beta)8 barrel. In order to further characterize these proteins, pH dependence kinetic experiments and chemical modification of the two active SMases D isoforms were performed. We show here that the amino acids involved in catalysis and in the metal ion binding sites are strictly conserved in the SMase D isoforms from L. intermedia. However, the kinetic studies indicate that SMase P1 hydrolyzes sphingomyelin less efficiently than P2, which can be attributed to a substitution at position 203 (Pro-Leu) and local amino acid substitutions in the hydrophobic channel that could probably play a role in the substrate recognition and binding.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources