Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;13(2):119-30.
doi: 10.1080/10739680500466400.

A role for heterocellular coupling and EETs in dilation of rat cremaster arteries

Affiliations

A role for heterocellular coupling and EETs in dilation of rat cremaster arteries

Iain N McSherry et al. Microcirculation. 2006 Mar.

Abstract

Objective: The authors probed endothelium-dependent dilation and endothelial cell Ca2+ handling in myogenically active resistance arteries.

Methods: First-order arteries were removed from rat cremaster muscles, cannulated, and pressurized (75 mmHg). Vessel diameter and endothelial cell Ca2+ were monitored using confocal microscopy, and arterial ultrastructure was determined using electron microscopy.

Results: Acetylcholine (ACh) stimulated elevations and oscillations in endothelial cell Ca2+, and concentration-dependently dilated arteries with myogenic tone. NO-independent dilation was blocked by 35 mM K+. Combined IK(Ca) (1 microM TRAM-34) and SK(Ca) (100 nM apamin) blockade partially inhibited NO-independent relaxations, with residual relaxations sensitive to BK(Ca) or cytochrome P-450 inhibition (100 nM iberiotoxin, and 20 microM 17-ODYA or 10 microM MS-PPOH). 11,12-EET stimulated iberiotoxin-sensitive dilation, but did not affect endothelial cell Ca2+. 15 mM K+ evoked dilation sensitive to inhibition of K(IR) (30 microM Ba2+) and Na+/K+-ATPase (10 microM ouabain), whereas these blockers did not affect ACh-mediated dilations. Homo- and heterocellular gap junctions were identified in radial sections through arteries.

Conclusion: These data suggest that rises in endothelial cell Ca2+ stimulate SK(Ca) and IK(Ca) channels, leading to hyperpolarization and dilation, likely due to electrical coupling. In addition, a component was unmasked following SK(Ca) and IK(Ca) blockade, attributable to activation of BK(Ca) channels by cytochrome P-450 metabolites.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources