Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;65(2):124-41.
doi: 10.1097/01.jnen.0000199572.96472.1c.

Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells

Affiliations

Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells

Barbara Serafini et al. J Neuropathol Exp Neurol. 2006 Feb.

Abstract

In multiple sclerosis (MS), dendritic cells (DCs) recruited to the central nervous system (CNS) are thought to be involved in the regulation of autoimmune responses directed against myelin antigens. To better understand the role of DCs in CNS inflammation, we performed a detailed immunohistochemical analysis of DC maturation markers and of DC relationship to CNS-infiltrating T cells in autopsy brain tissue of patients with MS. We also investigated the presence of DCs containing myelin debris in MS lesions. Myeloid DC subsets were identified using the following markers: CD1a for immature DCs; DC-SIGN for immature and mature DCs; and fascin, CD83, DC-LAMP, and CCR7 for mature DCs. The most common finding was the presence of cells expressing DC-SIGN and containing myelin components in the perivascular cuffs of early active and chronic (both active and inactive) MS lesions. Perivascular CD1a DCs were detected in active lesions in only one of 10 patients with MS who were examined. Although less numerous than DC-SIGN DCs, cells expressing mature DC markers were consistently detected in the inflamed meninges and perivascular cuffs of most active lesions examined. CCR7 immunostaining was predominantly confined to activated microglia at the lesion edges. Some perivascular DC-SIGN cells were found in close proximity to or contacting rare proliferating lymphocytes, most of which expressed the DC-SIGN ligand ICAM-3 and CD8. These data suggest that DCs recruited and maturing in MS lesions, where self-antigens are made available by continuous myelin destruction, may contribute to the local activation and expansion of presumably pathogenic T cells.

PubMed Disclaimer

Publication types

MeSH terms