The representation of perceived angular size in human primary visual cortex
- PMID: 16462737
- DOI: 10.1038/nn1641
The representation of perceived angular size in human primary visual cortex
Abstract
Two objects that project the same visual angle on the retina can appear to occupy very different proportions of the visual field if they are perceived to be at different distances. What happens to the retinotopic map in primary visual cortex (V1) during the perception of these size illusions? Here we show, using functional magnetic resonance imaging (fMRI), that the retinotopic representation of an object changes in accordance with its perceived angular size. A distant object that appears to occupy a larger portion of the visual field activates a larger area in V1 than an object of equal angular size that is perceived to be closer and smaller. These results demonstrate that the retinal size of an object and the depth information in a scene are combined early in the human visual system.
Comment in
-
Perceived size matters.Nat Neurosci. 2006 Mar;9(3):302-4. doi: 10.1038/nn0306-302b. Nat Neurosci. 2006. PMID: 16498422 No abstract available.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources