Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Mar;5(3):595-606.
doi: 10.1111/j.1365-2958.1991.tb00730.x.

Elimination of the disulphide bridge in fragment B of diphtheria toxin: effect on membrane insertion, channel formation, and ATP binding

Affiliations

Elimination of the disulphide bridge in fragment B of diphtheria toxin: effect on membrane insertion, channel formation, and ATP binding

H Stenmark et al. Mol Microbiol. 1991 Mar.

Abstract

Active diphtheria toxin consists of two disulphide-linked fragments, termed A and B. Fragment B, which contains an internal disulphide bridge, facilitates translocation of the enzymatically active fragment A to the cytosol of eukaryotic cells. In this process cation-selective channels are formed. An in vitro translated full-length mutant lacking the internal disulphide bridge (A-58**) was functionally indistinguishable from its disulphide-containing counterpart (A-58) with respect to trypsin sensitivity, receptor binding, A-fragment translocation, and channel formation. In contrast, the B fragment of A-58** (B-36**) was slightly less trypsin resistant than the S-S-containing B fragment, B-36, and was approximately 300-fold less efficient than B-36 in permeabilizing cells. When first dialysed and then reconstituted with A fragment, B fragment without disulphide bridge yielded a less-active toxin than did wild-type B fragment. We conclude that the disulphide bridge in fragment B is not necessary for toxicity, as earlier believed, and that channel formation may play a role in membrane translocation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources