Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;8(3):196-208.
doi: 10.1016/j.ymben.2005.12.001. Epub 2006 Feb 7.

Metabolic engineering of the E. coli L-phenylalanine pathway for the production of D-phenylglycine (D-Phg)

Affiliations

Metabolic engineering of the E. coli L-phenylalanine pathway for the production of D-phenylglycine (D-Phg)

Ulrike Müller et al. Metab Eng. 2006 May.

Abstract

D-phenylglycine (D-Phg) is an important side chain building block for semi-synthetic penicillins and cephalosporins such as ampicillin and cephalexin. To produce d-Phg ultimately from glucose, metabolic engineering was applied. Starting from phenylpyruvate, which is the direct precursor of L-phenylalanine, an artificial D-Phg biosynthesis pathway was created. This three-step route is composed of the enzymes hydroxymandelate synthase (HmaS), hydroxymandelate oxidase (Hmo), and the stereoinverting hydroxyphenylglycine aminotransferase (HpgAT). Together they catalyse the conversion of phenylpyruvate via mandelate and phenylglyoxylate to D-Phg. The corresponding genes were obtained from Amycolatopsis orientalis, Streptomyces coelicolor, and Pseudomonas putida. Combined expression of these activities in E. coli strains optimized for the production of L-phenylalanine resulted in the first completely fermentative production of D-Phg.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources