Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Jun;44(6):1046-54.
doi: 10.1016/j.jhep.2005.10.027. Epub 2005 Dec 7.

In vivo hepatic HB-EGF gene transduction inhibits Fas-induced liver injury and induces liver regeneration in mice: a comparative study to HGF

Affiliations
Free article
Comparative Study

In vivo hepatic HB-EGF gene transduction inhibits Fas-induced liver injury and induces liver regeneration in mice: a comparative study to HGF

Ngin Cin Khai et al. J Hepatol. 2006 Jun.
Free article

Abstract

Background/aims: It is unknown whether heparin-binding EGF-like growth factor (HB-EGF) can be a therapeutic agent, although previous studies suggested that HB-EGF might be a hepatotrophic factor. This study explores the potential of hepatic HB-EGF gene therapy in comparison with HGF.

Methods: Mice received an intraperitoneal injection of the agonistic anti-Fas antibody 72 h after an intravenous injection of either adenoviral vector (1x10(11) particles) expressing human HB-EGF (Ad.HB-EGF), human HGF (Ad.HGF) or no gene (Ad.dE1.3), and were sacrificed 24 or 36 h later to assess liver injury and regeneration.

Results: Exogenous HB-EGF was predominantly localized on the membrane, suggesting the initial synthesis of proHB-EGF in hepatocytes. The control Ad.dE1.3-treated mice represented remarkable increases in serum ALT and AST levels and histopathologically severe liver injuries with numerous apoptosis, but a limited number of mitogenic hepatocytes. In contrast, the liver injuries and apoptotic changes were significantly inhibited, but the mitogenic hepatocytes remarkably increased, in both the Ad.HB-EGF- and Ad.HGF-treated mice. More mitogenic hepatocytes and milder injuries were observed in the Ad.HB-EGF-treated mice.

Conclusions: HB-EGF has more potent protective and mitogenic effects for hepatocytes than HGF, at least for the present conditions. In vivo hepatic HB-EGF gene transduction is therapeutic for Fas-induced liver injury.

PubMed Disclaimer

Publication types

MeSH terms