Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;25(2):168-76.
doi: 10.1109/TMI.2005.862150.

Conductivity image reconstruction from defective data in MREIT: numerical simulation and animal experiment

Affiliations

Conductivity image reconstruction from defective data in MREIT: numerical simulation and animal experiment

Suk-ho Lee et al. IEEE Trans Med Imaging. 2006 Feb.

Abstract

Magnetic resonance electrical impedance tomography (MREIT) is designed to produce high resolution conductivity images of an electrically conducting subject by injecting current and measuring the longitudinal component, Bz, of the induced magnetic flux density B = (Bx, By, Bz). In MREIT, accurate measurements of Bz are essential in producing correct conductivity images. However, the measured Bz data may contain fundamental defects in local regions where MR magnitude image data are small. These defective Bz data result in completely wrong conductivity values there and also affect the overall accuracy of reconstructed conductivity images. Hence, these defects should be appropriately recovered in order to carry out any MREIT image reconstruction algorithm. This paper proposes a new method of recovering Bz data in defective regions based on its physical properties and neighboring information of Bz. The technique will be indispensable for conductivity imaging in MREIT from animal or human subjects including defective regions such as lungs, bones, and any gas-filled internal organs.

PubMed Disclaimer

Publication types