Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct;28(10):837-45.
doi: 10.1291/hypres.28.837.

Chronic hypoxia accelerates the progression of atherosclerosis in apolipoprotein E-knockout mice

Affiliations

Chronic hypoxia accelerates the progression of atherosclerosis in apolipoprotein E-knockout mice

Daisuke Nakano et al. Hypertens Res. 2005 Oct.

Abstract

The aim of this study was to investigate the effect of chronic hypoxia on the development and progression of atherosclerosis in apolipoprotein E-knockout (apoE-KO) mice. Male and female apoE-KO mice (6 weeks old) and age- and sex-matched wild-type mice were kept under hypoxic conditions (10.0 +/- 0.5% O2) in a gas chamber or in room air for 3 weeks. Aortic atherosclerotic plaque was not observed in wild-type mice under normoxic or hypoxic conditions. In the apoE-KO mice, however, hypoxia induced proliferation of smooth muscle cells and plaque formation in the aorta, which were not observed under normoxic conditions. Although sexual dimorphism of the response to hypoxia was not observed, these hypoxia-induced atherogenic changes were accompanied by a significant increase of plasma low density lipoprotein (LDL) cholesterol and NADPH-dependent vascular superoxide (O2-) production. Furthermore, matrix metalloproteinase (MMP)-9 was activated in the aorta of apoE-KO mice. In conclusion, chronic hypoxia accelerated the development of atherosclerosis in apoE-KO mice, along with increased O2- production and activated MMP-9 in the aorta.

PubMed Disclaimer