Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan 19;110(2):891-9.
doi: 10.1021/jp054364v.

Lability criteria for successive metal complexes in steady-state planar diffusion

Affiliations

Lability criteria for successive metal complexes in steady-state planar diffusion

José Salvador et al. J Phys Chem B. .

Abstract

The lability of sequential metal complexes, ML, ML2, ML3, ... , up to a general 1:n metal/ligand stoichiometric ratio is considered for the case of metal ions (M) being accumulated at a surface (analytical sensor or organism). The analytical solution for the steady-state diffusion of M within a sequential complexation scheme allows quantification of the contribution from the dissociation of all of the complex species to the metal flux through the so-called lability degree, xi. A lability degree for each sequential complexation step is also defined which, due to the sequential character of the complexation scheme, depends not only on the proper kinetic constants of the given complexation step but also on the kinetics of the previous ones. When all contributions from the complexes are diffusion limited, the system is fully labile and xi=1. To provide simple lability criteria, the reaction layer approximation is extended to specifically deal with this sequential complexation scheme, so that a reaction layer thickness is defined when the existence of one particular rate-limiting step is assumed. Expressions for the classical lability parameter, L, are formulated using the reaction layer approximation. The change of the lability of the system as the diffusion layer thickness is modified is analyzed in detail. The contribution of the complex flux reflects the evolution of the system from labile to inert as the thickness of the sensor is appropriately decreased.

PubMed Disclaimer

LinkOut - more resources