Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Feb 9;110(5):1959-63.
doi: 10.1021/jp056371p.

Comparative examination of the stability of semiconductor quantum dots in various biochemical buffers

Affiliations
Comparative Study

Comparative examination of the stability of semiconductor quantum dots in various biochemical buffers

Klaus Boldt et al. J Phys Chem B. .

Abstract

Due to their greater photostability compared to established organic fluorescence markers, semiconductor quantum dots provide an attractive alternative for the biolabeling of living cells. On the basis of a comparative investigation using differently sized thiol-stabilized CdTe nanocrystals in a variety of commonly used biological buffers, a method is developed to quantify the stability of such a multicomponent system. Above a certain critical size, the intensity of the photoluminescence of the nanocrystals is found to diminish with pseudo-zero-order kinetics, whereas for specific combinations of particle size, ligand, and buffer there appears to be no decay below this critical particle size, pointing out the necessity for thorough investigations of this kind in the view of prospect applications of semiconductor nanocrystals in the area of biolabeling.

PubMed Disclaimer

Publication types

LinkOut - more resources