Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2006 May 1;222(1-2):25-36.
doi: 10.1016/j.tox.2006.01.018. Epub 2006 Feb 13.

Roles of endogenous ascorbate and glutathione in the cellular reduction and cytotoxicity of sulfamethoxazole-nitroso

Affiliations
Clinical Trial

Roles of endogenous ascorbate and glutathione in the cellular reduction and cytotoxicity of sulfamethoxazole-nitroso

Sidonie N Lavergne et al. Toxicology. .

Abstract

Sulfamethoxazole (SMX) is an effective drug for the management of opportunistic infections, but its use is limited by hypersensitivity reactions, particularly in HIV-infected patients. The oxidative metabolite SMX-nitroso (SMX-NO), is thought to be a proximate mediator of SMX hypersensitivity, and can be reduced in vitro by ascorbate or glutathione. Leukocytes from patients with SMX hypersensitivity show enhanced cytotoxicity from SMX metabolites in vitro; this finding has been attributed to a possible "detoxification defect" in some individuals. The purpose of this study was to determine whether variability in endogenous ascorbate or glutathione could be associated with individual differences in SMX-NO cytotoxicity. Thirty HIV-positive patients and 23 healthy control subjects were studied. Both antioxidants were significantly correlated with the reduction of SMX-NO to its hydroxylamine, SMX-HA, by mononuclear leukocytes, and both were linearly depleted during reduction. Controlled ascorbate supplementation in three healthy subjects increased leukocyte ascorbate with no change in glutathione, and significantly enhanced SMX-NO reduction. Ascorbate supplementation also decreased SMX-NO cytotoxicity compared to pre-supplementation values. Rapid reduction of SMX-NO to SMX-HA was associated with enhanced direct cytotoxicity from SMX-NO. When forward oxidation of SMX-HA back to SMX-NO was driven by the superoxide dismutase mimetic, Tempol, SMX-NO cytotoxicity was increased, without enhancement of adduct formation. This suggests that SMX-NO cytotoxicity may be mediated, at least in part, by redox cycling between SMX-HA and SMX-NO. Overall, these data indicate that endogenous ascorbate and glutathione are important for the intracellular reduction of SMX-NO, a proposed mediator of SMX hypersensitivity, and that redox cycling of SMX-HA to SMX-NO may contribute to the cytotoxicity of these metabolites in vitro.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources