Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Apr:445:239-44.
doi: 10.1097/01.blo.0000201167.90313.40.

Comparative study of antimicrobial release kinetics from polymethylmethacrylate

Affiliations
Comparative Study

Comparative study of antimicrobial release kinetics from polymethylmethacrylate

Paloma Anguita-Alonso et al. Clin Orthop Relat Res. 2006 Apr.

Abstract

Polymethylmethacrylate loaded with antimicrobial agents (most commonly vancomycin and/or aminoglycosides) is used for treatment and prevention of orthopaedic infections. Emergence of organisms resistant to vancomycin or aminoglycosides or both has been reported. Therefore, we studied in vitro release from polymethylmethacrylate beads of antimicrobials with suitable spectra for orthopaedic infections, including cefazolin, ciprofloxacin, gatifloxacin, levofloxacin, linezolid, and rifampin (2.5%, 7.5%, and 15%). Beads were placed in a continuous flow chamber, and antimicrobial concentrations in chamber outflow were determined by bioassay at timed intervals thereafter. Release profiles were bimodal with initial rapid release of high concentrations followed by sustained, slow release. Antimicrobial agents studied showed varied release profiles, indicating that elution from polymethylmethacrylate is unique to individual antimicrobial agents. Increasing antimicrobial concentration in polymethylmethacrylate increased peak concentrations and area under the curve. Cefazolin, ciprofloxacin, gatifloxacin, levofloxacin, linezolid, and rifampin may be suitable for incorporation into polymethylmethacrylate for management of orthopaedic infections.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources