Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Feb;6(1):45-58.
doi: 10.2174/156652306775515600.

Gene therapy strategies towards immune tolerance to treat the autoimmune diseases

Affiliations
Review

Gene therapy strategies towards immune tolerance to treat the autoimmune diseases

Christopher Siatskas et al. Curr Gene Ther. 2006 Feb.

Abstract

Autoimmune diseases such as type 1 diabetes and multiple sclerosis pose a significant health burden on our society. As a whole, autoimmune diseases affect approximately 6% of the population and are the third largest disease burden after heart disease and cancer. Such pathologic manifestations arise by way of damaging reactions of B-cell derived antibodies and/or T-cells to self-antigens and are triggered by genetic and environmental factors. Currently there is no known cure, with treatment restricted to toxic, long-term immunosuppressive regimes, replacement therapy and in intractable cases, transplantation of autologous or allogeneic haematopoietic stem cells. In experimental models of autoimmunity, gene therapeutic approaches have demonstrated promise in treating the autoimmune diseases. These include delivery of anti-inflammatory cytokines and exploitation of regulatory T cells. However, none of these approaches provide lasting, long-term benefit. We hypothesise that therapeutically transduced haematopoietic stem cells followed by transplantation is an alternative strategy to establish permanent immune tolerance that can not only prevent autoimmunity but also cure these diseases. Our approach is focused on directing autoimmune disease-specific autoantigen expression in the thymus by genetic manipulation of haematopoietic stem cells to establish molecular chimeras. Our hypothesis originates from experimental studies with a mouse model of experimental autoimmune gastritis (EAG) and more recently with the non-obese diabetic (NOD) mouse model for type 1 diabetes (T1D).

PubMed Disclaimer

Publication types