Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Mar;117(3):289-300.
doi: 10.1111/j.1365-2567.2005.02317.x.

Imbalance of regulatory T cells in human autoimmune diseases

Affiliations
Review

Imbalance of regulatory T cells in human autoimmune diseases

Christian Dejaco et al. Immunology. 2006 Mar.

Abstract

The breakdown of mechanisms assuring the recognition of self and non-self is a hallmark feature of autoimmune diseases. In the past 10 years, there has been a steadily increasing interest in a subpopulation of regulatory T cells, which exert their suppressive function in vitro in a contact-dependent manner and preferentially express high levels of CD25 and forkhead and winged-helix family transcription factor forkhead box P3 (FOXP3) (TREGs). Recent findings of changed prevalences and functional efficiencies indicate that these TREGs play a unique role in autoimmune diseases. Clinical findings in patients with mutated FOXP3 genes and a specific polymorphism in the promotor region of FOXP3 also support the role of FOXP3 as a 'master control gene' in the development and functioning of TREGs. Both altered generation of TREGs and insufficient suppression of inflammation in autoimmune diseases are considered to be crucial for the initiation and perpetuation of disease. TREG-related somatic cell therapy is considered as an intriguing new intervention to approach autoimmune diseases.

PubMed Disclaimer

References

    1. Fontenot JD, Rudensky AY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol. 2005;6:331–7. - PubMed
    1. Graca L, Chen TC, Le Moine A, Cobbold SP, Howie D, Waldmann H. Dominant tolerance: activation thresholds for peripheral generation of regulatory T cells. Trends Immunol. 2005;26:130–5. - PubMed
    1. Gershon RK, Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology. 1970;18:723–35. - PMC - PubMed
    1. Sarantopoulos S, Lu L, Cantor H. Qa-1 restriction of CD8+ suppressor T cells. J Clin Invest. 2004;114:1218–21. - PMC - PubMed
    1. Roncarolo MG, Bacchetta R, Bordignon C, Narula S, Levings MK. Type 1 T regulatory cells. Immunol Rev. 2001;182:68–79. - PubMed

Publication types

MeSH terms

Substances