Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr 10;111(3):252-62.
doi: 10.1016/j.jconrel.2005.11.018. Epub 2006 Feb 14.

Fabrication and characterization of microfluidic probes for convection enhanced drug delivery

Affiliations

Fabrication and characterization of microfluidic probes for convection enhanced drug delivery

K B Neeves et al. J Control Release. .

Abstract

Convection enhanced drug delivery (CED) is a promising therapeutic method for treating diseases of the brain by enhancing the penetration of drugs. Most controlled release delivery methods rely on diffusion from a source to transport drugs throughout tissue. CED relies on direct infusion of drugs into tissue at a sufficiently high rate so that convective transport of drug is at least as important as diffusive transport. This work describes the fabrication and characterization of microfluidic probes for CED protocols and the role diffusion plays in determining penetration. Microfluidic channels were formed on silicon substrates by employing a sacrificial photoresist layer encased in a parylene structural layer. Flow in the microchannels was characterized by applying constant upstream pressures from 35 to 310 kPa, which resulted in flow rates of 0.5-4.5 microL/min. The devices were used to infuse Evans Blue and albumin in hydrogel brain phantoms. The results of these infusions were compared to a simple convection-diffusion model for infusions into porous media. In vivo infusions of albumin were performed in the gray matter of rats at upstream pressures of 35, 70, and 140 kPa. The microfabricated probes show reduced evidence of backflow along the device-tissue interface when compared with conventional needles used for CED.

PubMed Disclaimer

Publication types