Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr 14;281(15):10527-32.
doi: 10.1074/jbc.M513725200. Epub 2006 Feb 13.

Conformational stabilities of the structural repeats of erythroid spectrin and their functional implications

Affiliations
Free article

Conformational stabilities of the structural repeats of erythroid spectrin and their functional implications

Xiuli An et al. J Biol Chem. .
Free article

Abstract

The two polypeptide chains of the erythroid spectrin heterodimer contain between them 36 structural repeating modules, which can function as independently folding units. We have expressed all 36 and determined their thermal stabilities. These vary widely, with unfolding transition mid-points (T(m)) ranging from 21 to 72 degrees C. Eight of the isolated repeats are largely unfolded at physiological temperature. Constructs comprising two or more adjacent repeats show inter-repeat coupling with coupling free energies of several kcal mol(-1). Constructs comprising five successive repeats from the beta-chain displayed cooperativity and strong temperature dependence in forced unfolding by atomic force microscopy. Analysis of aligned sequences and molecular modeling suggests that high stability is conferred by large hydrophobic side chains at position e of the heptad hydrophobic repeats in the first helix of the three-helix bundle that makes up each repeat. This inference was borne out by the properties of mutants in which the critical residues have been replaced. The marginal stability of the tertiary structure at several points in the spectrin chains is moderated by energetic coupling with adjoining structural elements but may be expected to permit adaptation of the membrane to the large distortions that the red cell experiences in the circulation.

PubMed Disclaimer

Publication types

LinkOut - more resources