trt-1 is the Caenorhabditis elegans catalytic subunit of telomerase
- PMID: 16477310
- PMCID: PMC1361356
- DOI: 10.1371/journal.pgen.0020018
trt-1 is the Caenorhabditis elegans catalytic subunit of telomerase
Abstract
Mutants of trt-1, the Caenorhabditis elegans telomerase reverse transcriptase, reproduce normally for several generations but eventually become sterile as a consequence of telomere erosion and end-to-end chromosome fusions. Telomere erosion and uncapping do not cause an increase in apoptosis in the germlines of trt-1 mutants. Instead, late-generation trt-1 mutants display chromosome segregation defects that are likely to be the direct cause of sterility. trt-1 functions in the same telomere replication pathway as mrt-2, a component of the Rad9/Rad1/Hus1 (9-1-1) proliferating cell nuclear antigen-like sliding clamp. Thus, the 9-1-1 complex may be required for telomerase to act at chromosome ends in C. elegans. Although telomere erosion limits replicative life span in human somatic cells, neither trt-1 nor telomere shortening affects postmitotic aging in C. elegans. These findings illustrate effects of telomere dysfunction in C. elegans mutants lacking the catalytic subunit of telomerase, trt-1.
Conflict of interest statement
Competing interests. The authors have declared that no competing interests exist.
Figures
References
-
- Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997;277:955–959. - PubMed
-
- Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell. 1997;90:785–795. - PubMed
-
- Greider CW, Blackburn EH. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature. 1989;337:331–337. - PubMed
-
- Lingner J, Cooper JP, Cech TR. Telomerase and DNA end replication: No longer a lagging strand problem? Science. 1995;269:1533–1534. - PubMed
-
- Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–460. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
