Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;14(2):107-23.
doi: 10.3109/10715769109094123.

The autoxidation of iron(II) in aqueous systems: the effects of iron chelation by physiological, non-physiological and therapeutic chelators on the generation of reactive oxygen species and the inducement of biomolecular damage

Affiliations

The autoxidation of iron(II) in aqueous systems: the effects of iron chelation by physiological, non-physiological and therapeutic chelators on the generation of reactive oxygen species and the inducement of biomolecular damage

M J Burkitt et al. Free Radic Res Commun. 1991.

Abstract

The ability of various iron(II)-complexes of biological, clinical and chemical interest to reduce molecular oxygen to reactive oxy-radicals has been investigated using complementary oxygen-uptake studies and e.s.r. techniques. It is demonstrated that although the rate of oxygen reduction by a given iron complex is directly related to its redox potential [thus complexes with low values of E0 for the Fe(III)/Fe(II) couple are the most effective reductants of oxygen], the overall ability of an iron(II) complex to induce oxidative biomolecular damage is also determined by its ability to undergo redox-cycling reactions with reducing radicals formed following the reaction of hydroxyl radicals with organic substrates present in the system (e.g. metal-ion chelators and organic buffers). Evidence is presented to suggest that the "Good" buffer MOPS forms a reducing radical following attack by .OH, and hence encourages the autoxidation of iron with the generation of oxy-radicals (as also observed for some of the chelates studied); this may have important implications for the use of such buffers in free-radical studies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources