Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb 16:7:72.
doi: 10.1186/1471-2105-7-72.

GO-Diff: mining functional differentiation between EST-based transcriptomes

Affiliations

GO-Diff: mining functional differentiation between EST-based transcriptomes

Zuozhou Chen et al. BMC Bioinformatics. .

Abstract

Background: Large-scale sequencing efforts produced millions of Expressed Sequence Tags (ESTs) collectively representing differentiated biochemical and functional states. Analysis of these EST libraries reveals differential gene expressions, and therefore EST data sets constitute valuable resources for comparative transcriptomics. To translate differentially expressed genes into a better understanding of the underlying biological phenomena, existing microarray analysis approaches usually involve the integration of gene expression with Gene Ontology (GO) databases to derive comparable functional profiles. However, methods are not available yet to process EST-derived transcription maps to enable GO-based global functional profiling for comparative transcriptomics in a high throughput manner.

Results: Here we present GO-Diff, a GO-based functional profiling approach towards high throughput EST-based gene expression analysis and comparative transcriptomics. Utilizing holistic gene expression information, the software converts EST frequencies into EST Coverage Ratios of GO Terms. The ratios are then tested for statistical significances to uncover differentially represented GO terms between the compared transcriptomes, and functional differences are thus inferred. We demonstrated the validity and the utility of this software by identifying differentially represented GO terms in three application cases: intra-species comparison; meta-analysis to test a specific hypothesis; inter-species comparison. GO-Diff findings were consistent with previous knowledge and provided new clues for further discoveries. A comprehensive test on the GO-Diff results using series of comparisons between EST libraries of human and mouse tissues showed acceptable levels of consistency: 61% for human-human; 69% for mouse-mouse; 47% for human-mouse.

Conclusion: GO-Diff is the first software integrating EST profiles with GO knowledge databases to mine functional differentiation between biological systems, e.g. tissues of the same species or the same tissue cross species. With rapid accumulation of EST resources in the public domain and expanding sequencing effort in individual laboratories, GO-Diff is useful as a screening tool before undertaking serious expression studies.

PubMed Disclaimer

Figures

Figure 1
Figure 1
A. Flow diagram of GO term representation calculation B. Overview diagram of GO-Diff algorithm.

Similar articles

Cited by

References

    1. Kanapin A, Batalov S, Davis MJ, Gough J, Grimmond S, Kawaji H, Magrane M, Matsuda H, Schonbach C, Teasdale RD, Yuan Z. Mouse proteome analysis. Genome Res. 2003;13:1335–1344. doi: 10.1101/gr.978703. - DOI - PMC - PubMed
    1. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467–470. - PubMed
    1. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science. 1995;270:484–487. - PubMed
    1. de Lichtenberg U, Jensen LJ, Brunak S, Bork P. Dynamic complex formation during the yeast cell cycle. Science. 2005;307:724–727. doi: 10.1126/science.1105103. - DOI - PubMed
    1. Peng S, Xu Q, Ling XB, Peng X, Du W, Chen L. Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines. FEBS Lett. 2003;555:358–362. doi: 10.1016/S0014-5793(03)01275-4. - DOI - PubMed

Publication types