Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun 1;14(11):3938-46.
doi: 10.1016/j.bmc.2006.01.039. Epub 2006 Feb 15.

Synthesis and in vitro binding of N,N-dialkyl-2-phenylindol-3-yl-glyoxylamides for the peripheral benzodiazepine binding sites

Affiliations

Synthesis and in vitro binding of N,N-dialkyl-2-phenylindol-3-yl-glyoxylamides for the peripheral benzodiazepine binding sites

Taryn P Homes et al. Bioorg Med Chem. .

Abstract

A series of N,N-dialkyl-2-phenylindol-3-ylglyoxylamides bearing the halogens iodine and bromine were synthesised and their binding affinity for the peripheral benzodiazepine binding sites (PBBS) in rat kidney mitochondrial membranes was evaluated using [(3)H]PK11195. Central benzodiazepine receptor (CBR) affinities were also evaluated in rat cortices using [(3)H]flumazenil to determine their selectivity for PBBS over CBR. The tested compounds had PBBS binding affinities (IC(50)) ranging from 7.86 to 618 nM, with all compounds showing high selectivity over the CBR (CBR IC(50) > 5000 nM). Among the 12 compounds tested, those with a diethylamide group were the most potent. The highest affinity iodinated PBBS ligand, N,N-diethyl-[5-chloro-2-(4-iodophenyl)indol-3-yl]glyoxylamide, was radiolabelled with iodine-123. This high affinity and selective radioligand may be useful for imaging neurodegeneration, inflammation and tumours using single photon emission computed tomography.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources