Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Mar;17(3):716-23.
doi: 10.1681/ASN.2005090954. Epub 2006 Feb 15.

Role of CXC chemokine receptor 3 pathway in renal ischemic injury

Affiliations
Comparative Study

Role of CXC chemokine receptor 3 pathway in renal ischemic injury

Paolo Fiorina et al. J Am Soc Nephrol. 2006 Mar.

Abstract

Chemokines play a major role in the recruitment of leukocytes in inflammation and in the regulation of T helper 1 (Th1)/Th2 immune responses. These mechanisms have been recognized to be important in the pathogenesis of renal ischemia-reperfusion (I/R) injury. The interaction of the CXC chemokine receptor 3 (CXCR3) receptor with its ligands is a key pathogenic pathway in promoting inflammation and in enhancing Th1 immune responses. After the induction of ischemia in the mouse model of renal ischemia, an increase in intrarenal expression of CXCR3 and its ligands was observed. Compared with the wild-type (WT) mice, CXCR3-deficient mice (CXCR3-/-) had significantly lower serum creatinine levels, better survival rate, and significantly less acute tubular necrosis and cellular infiltrates. In the kidney, intracellular staining of infiltrating cells that were recovered from kidneys revealed a lower percentage of CD4+IFN-gamma+ cells in the CXCR3-/- mice compared with the WT mice. Furthermore, adoptive transfer of WT CD3+ cells into CXCR3-/- mice before induction of I/R injury abrogated the protection of CXCR3-/- mice from I/R injury. It is concluded that CXCR3 plays an important role in orchestrating the recruitment of Th1 cells to the ischemic kidney and in mediating I/R injury and therefore may serve as a novel target for the therapy of I/R injury.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources