Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 Jun 27;351(6329):742-4.
doi: 10.1038/351742a0.

Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells

Affiliations
Comparative Study

Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells

P Werner et al. Nature. .

Abstract

Kainic acid is a potent neurotoxin for certain neurons. Its neurotoxicity is thought to be mediated by an excitatory amino-acid-gated ion channel (ionotropic receptor) possessing nanomolar affinity for kainate. Here we describe a new member of the rat excitatory amino-acid receptor gene family, KA-1, that has a 30% sequence similarity with the previously characterized alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunits GluR-A to -D. The pharmacological profile of expressed recombinant KA-1 determined in binding experiments with [3H]kainate is different from that of the cloned AMPA receptors and similar to the mammalian high-affinity kainate receptor (kainate greater than quisqualate greater than glutamate much greater than AMPA) with a dissociation constant of about 5 nM for kainate. The selectively high expression of KA-1 messenger RNA in the CA3 region of the hippocampus closely corresponds to autoradiographically located high-affinity kainate binding sites. This correlation, as well as the particular in vivo pattern of neurodegeneration observed on kainate-induced neurotoxicity, suggests that KA-1 participates in receptors mediating the kainate sensitivity of neurons in the central nervous system.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources