Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Mar;15(2):179-86.
doi: 10.1097/01.mnh.0000214776.19233.68.

Targeting reactive oxygen species in hypertension

Affiliations
Review

Targeting reactive oxygen species in hypertension

M Eugenia Cifuentes et al. Curr Opin Nephrol Hypertens. 2006 Mar.

Abstract

Purpose of review: Hypertension is a major risk factor for vascular diseases such as stroke, myocardial infarction, and renal microvascular disease. The mechanism by which vascular disease develops is complex, and growing evidence suggests that an increase in reactive oxygen species during hypertension is a major contributing factor. NADPH oxidase, the primary source of reactive oxygen species in the cardiovascular system, is a strong candidate for the development of therapeutic agents to ameliorate hypertension and end-organ damage.

Recent findings: Various scavengers and inhibitors of reactive oxygen species have been proposed for use in animal as well as human studies. While many of these agents are effective at lowering tissue reactive oxygen species levels, their specificity is a serious concern. Our laboratory has developed cell-permeant peptidic inhibitors targeting key interactions among the different NAD(P)H oxidase homologues. One of these inhibitors targeting nox2 and p47-phox interaction has proven useful in attenuating target neoplasia and hypertrophy.

Summary: Strategies aimed at specifically inhibiting NAD(P)H oxidase have proven effective in attenuating cardiovascular oxidative stress. The development of new inhibitors targeting novel oxidase homologues appears to hold significant promise for clarifying the physiologic role of these homologues as well as for the development of new antioxidant therapies.

PubMed Disclaimer

MeSH terms