Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;36(3):661-70.
doi: 10.1002/eji.200535239.

Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells

Affiliations
Free article

Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells

Marieke A Hoeve et al. Eur J Immunol. 2006 Mar.
Free article

Abstract

IL-23 is regarded as a major pro-inflammatory mediator in autoimmune disease, a role which until recently was ascribed to its related cytokine IL-12. IL-23, an IL-12p40/p19 heterodimeric protein, binds to IL-12Rbeta1/IL-23R receptor complexes. Mice deficient for p19, p40 or IL-12Rbeta1 are resistant to experimental autoimmune encephalomyelitis or collagen-induced arthritis. Paradoxically, however, IL-12Rbeta2- and IL-12p35-deficient mice show remarkable increases in disease susceptibility, suggesting divergent roles of IL-23 and IL-12 in modulating inflammatory processes. IL-23 induces IL-17, which mediates inflammation and tissue remodeling, but the role of IL-12 in this respect remains unidentified. We investigated the roles of exogenous (recombinant) and endogenous (macrophage-derived) IL-12 and IL-23, on IL-17-induction in human T-cells. IL-23 enhanced IL-17 secretion, as did IL-2, IL-15, IL-18 and IL-21. In contrast, IL-12 mediated specific inhibition of IL-17 production. These data support the role of IL-23 in inflammation through stimulating IL-17 production by T lymphocytes, and importantly indicate a novel regulatory function for IL-12 by specifically suppressing IL-17 secretion. These data therefore extend previous reports that had indicated unique functions for IL-23 and IL-12 due to distinct receptor expression and signal transduction complexes, and provide novel insights into the regulation of immunity, inflammation and immunopathology.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources