Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;18(3):660-82.
doi: 10.1162/089976606775623298.

The costs of ignoring high-order correlations in populations of model neurons

Affiliations

The costs of ignoring high-order correlations in populations of model neurons

Melchi M Michel et al. Neural Comput. 2006 Mar.

Abstract

Investigators debate the extent to which neural populations use pair-wise and higher-order statistical dependencies among neural responses to represent information about a visual stimulus. To study this issue, three statistical decoders were used to extract the information in the responses of model neurons about the binocular disparities present in simulated pairs of left-eye and right-eye images: (1) the full joint probability decoder considered all possible statistical relations among neural responses as potentially important; (2) the dependence tree decoder also considered all possible relations as potentially important, but it approximated high-order statistical correlations using a computationally tractable procedure; and (3) the independent response decoder, which assumed that neural responses are statistically independent, meaning that all correlations should be zero and thus can be ignored. Simulation results indicate that high-order correlations among model neuron responses contain significant information about binocular disparities and that the amount of this high-order information increases rapidly as a function of neural population size. Furthermore, the results highlight the potential importance of the dependence tree decoder to neuroscientists as a powerful but still practical way of approximating high-order correlations among neural responses.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources