Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr;20(6):788-90.
doi: 10.1096/fj.05-5091fje. Epub 2006 Feb 16.

Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain

Affiliations

Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain

Celeste M Bolin et al. FASEB J. 2006 Apr.

Abstract

Oxidative damage to DNA has been associated with neurodegenerative diseases. Developmental exposure to lead (Pb) has been shown to elevate the Alzheimer's disease (AD) related beta-amyloid peptide (Abeta), which is known to generate reactive oxygen species in the aging brain. This study measures the lifetime cerebral 8-hydroxy-2'-deoxyguanosine (oxo8dG) levels and the activity of the DNA repair enzyme 8-oxoguanine DNA glycosylase (Ogg1) in rats developmentally exposed to Pb. Oxo8dG was transiently modulated early in life (Postnatal day 5), but was later elevated 20 months after exposure to Pb had ceased, while Ogg1 activity was not altered. Furthermore, an age-dependent loss in the inverse correlation between Ogg1 activity and oxo8dG accumulation was observed. The effect of Pb on oxo8dG levels did not occur if animals were exposed to Pb in old age. These increases in DNA damage occurred in the absence of any Pb-induced changes in copper/zinc-superoxide dismutase (SOD1), manganese-SOD (SOD2), and reduced-form glutathion (GSH). These data suggest that oxidative damage and neurodegeneration in the aging brain could be impacted by the developmental disturbances.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources