Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;53(2):311-9.
doi: 10.1109/TBME.2005.857638.

Intraspinal microstimulation using cylindrical multielectrodes

Affiliations

Intraspinal microstimulation using cylindrical multielectrodes

Sean Snow et al. IEEE Trans Biomed Eng. 2006 Feb.

Abstract

A cylindrical multielectrode system specifically designed for intraspinal microstimulation was mechanically and electrically evaluated in the ventral horn of the feline lumbo-sacral spinal cord. Electrode insertions proved to be straight as evaluated from radiographs. Impedances were measured in situ and force recruitment curves from quadriceps muscles were collected over a wide range of stimulus parameters. For a given charge, higher current amplitudes produced greater forces than proportionally longer pulse durations, indicating that charge is not the sole indicator of evoked force in applications utilizing electrical stimulation. Overlap measurements for calculating current-distance constants were collected at a variety of current amplitudes, electrode pair separations, and pair orientations in the spinal grey matter. Forces obtained in the majority of these trials demonstrated an order effect, presumably due to asymmetric neuronal connectivity within the spinal cord. In the cases showing no order effect, the dorso-ventral electrode pair orientation yielded a higher average current-distance constant (278 microA/mm2) than either the medio-lateral or rostro-caudal electrode pair orientations (197 microA/mm2). Specifications of an array of cylindrical multielectrodes for use in future intraspinal microstimulation prostheses were updated.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources